a2 United States Patent

Fastow et al.

US009230548B2

US 9,230,548 B2
Jan. 5, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)
(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

HYBRID HASHING SCHEME FOR ACTIVE
HMMS

Applicant: Spansion LL.C, Sunnyvale, CA (US)

Richard M. Fastow, Cupertino, CA
(US); Ojas A. Bapat, Sunnyvale, CA
us)

Inventors:

Assignee: Cypress Semiconductor Corporation,

San Jose, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 488 days.

Appl. No.: 13/725,173

Filed: Dec. 21, 2012

Prior Publication Data

US 2014/0180690 A1 Jun. 26, 2014

Int. CL.
GI0L 15/00
GI0L 15/14
GI0L 15/28
U.S. CL
CPC i GI0L 15/285 (2013.01)
Field of Classification Search
CPC ... G10L 15/142; G10L 15/144; G10L 15/14;
G10L 15/146; G10L 15/16; G10L 15/183;
G10L 2015/085; GO6K 9/6297; GO6K
9/00879; GOG6K 9/6256; GO6N 3/0454;
GO6N 3/084; GO6N 99/005; HO4L 25/03171;
HO4L 25/03178; HO4L 9/0643; GOGF
12/1018; GOGF 17/30949; GOGF 3/0641;
GOGF 17/30097; GOGF 3/0608; GOGF 17/3033
USPC ..o 704/256,256.1-256.8; 711/216
See application file for complete search history.

(2013.01)
(2006.01)
(2013.01)

Valld Scored
BO~gy g0

(56) References Cited
U.S. PATENT DOCUMENTS
4,852,180 A * 7/1989 Levinson 704/256.4
5,032,987 A * 7/1991 Broderetal. ... Lo 71221
5,900,001 A * 5/1999 Wolczko etal.ccoevvveneee /1
5911,144 A * 6/1999 Schwartzetal.1
6,052,698 A * 4/2000 Bennett etal.1
6,067,547 A * 5/2000 Douceur1
6,226,634 B1* 5/2001 Ogihara et al. .11
6,567,817 B1* 5/2003 VanLeer11
7,031,985 B1* 4/2006 Pechenyccccocevvvvuinennnn. /1
7,035,802 B1* 4/2006 Rigazioetal. 704/256
7,039,764 B1* 5/2006 Shettyetal. 711/133
(Continued)
FOREIGN PATENT DOCUMENTS
Jp 7-168848 A 7/1995
OTHER PUBLICATIONS

David Guthrie et al., “Efficient Minimal Perfect Hash Language
Models,” Proceedings of the Seventh International Conference on
Language Resources and Evaluation, pp. 2889-2896, May 19-21,
2010.*

(Continued)

Primary Examiner — Edgar Guerra-Erazo

(57) ABSTRACT

Embodiments of the present invention include a data storage
device and a method for storing data in a hash table. The data
storage device can include a first memory device, a second
memory device, and a processing device. The first memory
device is configured to store one or more data elements. The
second memory device is configured to store one or more
status bits at one or more respective table indices. In addition,
each of the table indices is mapped to a corresponding table
index in the first memory device. The processing device is
configured to calculate one or more hash values based on the
one or more data elements.

19 Claims, 13 Drawing Sheets

900

>

920 93 94
s

Overflow Length.

- |
}’ ARC Data’ Score! Overflow PTR, |

4
950

Second Block
960

Overflow Section

970

First Block
910

US 9,230,548 B2
Page 2

(56)

7,107,258
7,877,256
8,209,178
8,332,433
9,047,868
2002/0046017
2003/0182291
2005/0044134
2006/0122989
2007/0098150
2007/0115986
2008/0034115
2009/0240913
2010/0211378
2010/0235392

References Cited

U.S. PATENT DOCUMENTS

B2 *
B2 *
BL*
B2 *
BL*
Al*
Al*
Al

Al

Al*
Al*
Al*
Al*
Al*
Al*

9/2006
1/2011
6/2012
12/2012
6/2015
4/2002
9/2003
2/2005
6/2006
5/2007
5/2007
2/2008
9/2009
8/2010
9/2010

Chengetal.ccccoeee 707/698
Lietal. 704/256
Talbot et al. .. 704/255
Bentkofsky et al. 707/791
O’Neill etal. ... /1
Kempe 704/1
Kurupati et al. 707/100
Krueger et al.

Kurupati et al.

Lauteretal. 380/28
Shankara 370/392
Chuetal. 709/239
Obanaetal. 711216
Bulykoocooooiiiiiii 704/9
McCreight et al. 707/780

2010/0272256 Al* 10/2010 Barasetal. 380/46
2011/0093664 Al* 42011 Leppard 711/154
2012/0095974 Al* 4/2012 Bentkofsky etal. 707/703
2012/0102298 Al 4/2012 Sengupta et al.
2012/0173510 Al 7/2012 Rizvik et al.

OTHER PUBLICATIONS

Phillips, Steven, and Anne Rogers. “Parallel speech recognition.”
International Journal of Parallel Programming 27.4 (1999): 257-

288.*

International Search Report and Written Opinion of the International
Searching Authority for International Application No. PCT/US2013/

075313, mailed Mar. 31, 2014.

English language abstract of Japanese Patent Document 7-168848-A.
Pending Application, U.S. Appl. No. 13/489,799, inventors Fastow et
al., filed Jun. 6, 2012 (Not Published).

* cited by examiner

US 9,230,548 B2

Sheet 1 of 13

Jan. 5, 2016

U.S. Patent

Suispon
JEUIRIC)
jabenfue

{RIOM

o
O
—

1
,,/

J

v

L a4
58100 uonenjeng | @005 BulepoN | suciosp Buissescyy | eubig
EERTET N sweuoyd | suousg 211SNooY T miniead pufio i Bopuy
; .
U L {
5} M :74)) 18 w S0l
oeL” 0cL” o1y’

U.S. Patent Jan. 5,2016 Sheet 2 of 13 US 9,230,548 B2

200
210 220
; _
\’.,.
))
Input Processing
Device Unit
240
{
3
230
Memory
Device
FIG. 2

{Conventional)

US 9,230,548 B2

Sheet 3 of 13

Jan. 5§, 2016

U.S. Patent

{1BUCIIUSAUOD)
£ Ol
aoIne(Qg BMAS(T
Aowap ndug
4
])
(e (0]
e
N

\.\ _||||||||||I|I||I||I||||||||.|I||||||||||:.|||.|l||l.|.||||||||||I||||.|||||_

0) 74 " [

i |

_ [

_ I

|| Buyepopy ¥ !

" lewwels | S2i005 | uopeneAl | 53009 | Duyepopy | SiosA | Bussaooig | euBig i

_ jebenbue |aussucyd | sweuoyd | SUOUBS | onsnosy | 2inesy pulic indu eebig "

10 : f

R m p ﬁ Lo

n ﬂf. v S \,v S v ..f., H,\, |

‘) _

|) s e’ S AT oLe” s08 |

_ Ore _

_ [

| 1un Buisseooid !

¢ 0z

U.S. Patent

ACP

Jan. 5, 2016
CRU |
|
|
410 420
£ | $
N\ ! \
\ : \
H | i
!
|
|
Signal | Acoustic
Processing | Modeling
|
|
|
|
|
|
|
|
|
|

Sheet 4 of 13 US 9,230,548 B2
400
| CPU
I
[
|
/ 430 : ; 440
) ! %
i : i
: Word/
Phonems [Language/
Evaluation : Grammar
E Modeling
—_— E
e 450
z
{
]
i
§

U.S. Patent Jan. 5,2016 Sheet 5 of 13 US 9,230,548 B2

e SUG
mmmmmmmmmmmmmmmmmmmmmmmm S Y A

¥

interface

¥

b512
525
520 \

&

~-515

HMM

545 .-

530
1 D37 SSU

e 540 % t

— Memory % ? ‘ :

i

535 E

e e e o o e o o o o o o e e e e e e o o o o

U.S. Patent Jan. 5,2016 Sheet 6 of 13 US 9,230,548 B2

&
-~ 537 540
S E L.
|
. :
I |
| I
545 | B0 ! 5:25
3 [
et ‘ » Controller ¢ S —
| l
{ |
{ & |
! [
{
s {
! |
| |
i ¥ |
i e !
Memory 620 :
|
|
|
|
|

US 9,230,548 B2

Sheet 7 of 13

Jan. 5§, 2016

U.S. Patent

AR E
%
LEG
e L
m ;
| ,
!
“
xw [kY H
i i 1
GZ¢ “ W L 4 5
_
_
" 08/ 094 : ovs el zs OLL
_ % 4 MNHD % 4008 Ndd
M NZD DYY NI d- T3l d OLBHH A QLBIH NS A
|
" L 2
|
A 2 044 Aowsi
|
S
M B 08/ eyng
i
\\1 A S My

U.S. Patent

Jan. 5§, 2016 Sheet 8 of 13

Receive feature vectors and HMM
information from external computing
device

1

~ 810

¥

Calculate senone scores

F R820

- 830

Store HMM state soores

N BAD

—

Transfer HMM state scores to external
computing device

- BEQ

FIG. 8

US 9,230,548 B2

84

US 9,230,548 B2

Sheet 9 of 13

Jan. 5, 2016

U.S. Patent

- 0L8
6 "Dl HO0IE 1844
(346
LONDSS MOBISAD
056
/
“pbusT MORIBAO A\l
vm»m,& %QE@;@%@EQW._\MNEQ ey L
,f r... «f A
_W “)
45 ges 426

g8
¥3I0H PUODRS

066~

pRI0OS PERA

g

08g

U.S. Patent Jan. 5,2016 Sheet 10 of 13 US 9,230,548 B2

1000

1002

Data Reception
hd
.. HashKey . 1004
Incrementor Generation
1018~ - — -
N
{+) |
7 N -1006
P .
~" Check ™. Clear o AD08
S\ Valid Bit -~ Not Found
N o
N
l Set
| DataRead ~~-1010
/...f“f;g\\
e o
No " Does Data\\{;‘\‘“‘1012
“\f\ Match Stored >
N Data _‘.-f“'f
\,\ . /..-"
\,\‘ } a,f
N

i Yes

Set Scored Bit {1014

¥

Process Data 1016

U.S. Patent

incrementor
LR VAN

Jan. §, 2016 Sheet 11 of 13

'
Nl

*\f

Data Reception y~ 1102
ki
o HashKey . 1104
T Generation ‘

.-"' v\f»\‘:/'\»--"l 1 06

o

o .
_Set .~ Check ™.

N Valid Bit
,_\‘\ ‘f_,/
o

Clear
Write Data 1108

¥

Set Valid Bit 1110

US 9,230,548 B2

1100

U.S. Patent

No

12

1260 .~

Jan. 5, 2016

Sheet 12 of 13

Initialization

~~-1210

h

i

i
\%

Sacond Block
Read

e 1220

US 9,230,548 B2

et
[
Lo
i

B

%
;
X

-'/‘
-'/‘
"

.,

V=1

‘_/"’{(\"\,.f\": *-" 1 2 30

“

(First Block Read
1

-~ 1250

No

Scoring

70
2 ¥

SN
7T N 1290

incrementor

B8

1295

{/

p
e .
_~ndex = Size™_Yes
o of Table 7
. P

-+ Complete

U.S. Patent Jan. 5,2016 Sheet 13 of 13 US 9,230,548 B2

1?:06 1300
AN
™ A ?\\
k PROCESSOR . 1304
\\{;— ----------- 14
[zi \Ex
’\ 4 MAINMEMORY p~.. 1308
R
1302 1330
n"i ,.,,,,,...“E\ = *““tj
{ 4DISPLAY INTERFACE - ~——1{ DISPLAY UNIT
ey 7
L 1310
e
SECONDARY MEMORY
2
HARD DISK
COMMUNICATION |
INFRASTRUCTURE
: 1314
AR P 1318
i \ f_J
_— REMOVABLE : | | REMOVABLE
NV STORAGE DRIVE STORAGE UNIT
(_1J 322
REMOVABLE
INTERFACE == ~~1 STORAGE UNIT
*\.\‘
A 1320
1324
3 1326
s 1328 [} J
S } f ‘l:»..‘, «.::T‘“'\‘;","M
;. . o i A Y
AN communication oozl | A
\y/l INTERFACE L i -
' | | COMMUNICATION
................ S et PATH

FIG. 13

US 9,230,548 B2

1
HYBRID HASHING SCHEME FOR ACTIVE
HMMS

CROSS REFERENCE TO RELATED
APPLICATION

This application is related to U.S. patent application Ser.
No. 13/489,799, filed Jun. 6, 2012, titled “Acoustic Process-
ing Unit,” which is incorporated by reference in its entirety.

BACKGROUND

1. Field

Embodiments of the present invention generally relate to
data pattern recognition. More particular, embodiments of the
present invention relate to a phoneme score accelerator for
data pattern recognition.

2. Background

Real-time data pattern recognition is increasingly used to
analyze data streams in electronic systems. For example, on a
vocabulary with over tens of thousands of words, speech
recognition systems have achieved improved accuracy, mak-
ing it an attractive feature for electronic systems. Speech
recognition systems are increasingly common in consumer
markets targeted to data pattern recognition applications such
as, for example, the mobile device, server, automobile, and
PC markets.

Despite the improved accuracy in speech recognition sys-
tems, significant computing resources are dedicated to the
speech recognition process, in turn placing a significant load
on computing systems such as, for example, multiuser/mul-
tiprogramming environments. Multiprogramming comput-
ing systems concurrently process data from various applica-
tions and, as a result, the load placed on these computing
systems by the speech recognition process affects the speed at
which the computing systems can process incoming voice
signals as well as data from other applications. Further, for
handheld devices that typically include limited memory
resources (as compared to desktop computing systems),
speech recognition applications not only place significant
load on the handheld device’s computing resources but also
consume a significant portion of the handheld device’s
memory resources. The above speech recognition system
issues of processing capability, speed, and memory resources
are further exacerbated by the need to process incoming voice
signals in real-time or substantially close to real-time.

SUMMARY

Therefore, there is a need to improve the load that speech
recognition systems place on the processing capability,
speed, and memory resources of computing systems.

An embodiment of the present invention includes a data
storage device. The data storage device can include a first
memory device, a second memory device, and a processing
device. The first memory device is configured to store one or
more data elements. The second memory device is configured
to store one or more status bits at one or more respective table
indices. In addition, each of the table indices is mapped to a
corresponding table index in the first memory device. The
processing device is configured to calculate one or more hash
values based on the one or more data elements.

Another embodiment of the present invention includes a
method for storing data. The method can include the follow-
ing: hashing a first data to generate a table index and reading
a valid bit at the table index of a first memory device. The

10

15

20

25

30

35

40

45

50

55

60

65

2

valid bit indicates whether a table entry at a corresponding
table index of a second memory device is valid.

Further features and advantages of the invention, as well as
the structure and operation of various embodiments of the
present invention, are described in detail below with refer-
ence to the accompanying drawings. It is noted that the inven-
tion is not limited to the specific embodiments described
herein. Such embodiments are presented herein for illustra-
tive purposes only. Additional embodiments will be apparent
to persons skilled in the relevant art based on the teachings
contained herein.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated
herein and form a part of the specification, illustrate embodi-
ments of the present invention and, together with the descrip-
tion, further serve to explain the principles of the invention
and to enable a person skilled in the relevant art to make and
use the invention.

FIG. 1 is an illustration of an exemplary flowchart of a
speech recognition process according to an embodiment of
the present invention.

FIG. 2 is an illustration of a conventional speech recogni-
tion system.

FIG. 3 is an illustration of a conventional speech recogni-
tion system with speech recognition processes performed by
an individual processing unit.

FIG. 4 is an illustration of an embodiment of speech rec-
ognition processes performed by an Acoustic Co-Processor
(ACP) and a Central Processing Unit (CPU).

FIG. 5 is an illustration of an embodiment of an Acoustic
Co-Processor (ACP).

FIG. 6 is an illustration of an embodiment of a memory
module in an Acoustic Co-Processor (ACP).

FIG. 7 is an illustration of an embodiment of a Hidden
Markov Model (HMM) module in an Acoustic Co-Processor
(ACP).

FIG. 8 is an illustration of an embodiment of a method for
acoustic signal processing.

FIG. 9 is an illustration of an embodiment of a hash table.

FIG. 10 is an illustration of an embodiment of a hash table
search process.

FIG. 11 is an illustration of an embodiment of a hash table
insertion process.

FIG. 12 is an illustration of an embodiment of a hash table
residual active process.

FIG. 13 is an illustration of an example computer system in
which embodiments of the present invention, or portions
thereof, can be implemented as computer readable code.

DETAILED DESCRIPTION

The following detailed description refers to the accompa-
nying drawings that illustrate exemplary embodiments con-
sistent with this invention. Other embodiments are possible,
and modifications can be made to the embodiments within the
spirit and scope of the invention. Therefore, the detailed
description is not meant to limit the scope of the invention.
Rather, the scope of the invention is defined by the appended
claims.

It would be apparent to a person skilled in the relevant art
that the present invention, as described below, can be imple-
mented in many different embodiments of software, hard-
ware, firmware, and/or the entities illustrated in the figures.
Thus, the operational behavior of embodiments of the present
invention will be described with the understanding that modi-

US 9,230,548 B2

3

fications and variations of the embodiments are possible,
given the level of detail presented herein.

This specification discloses one or more embodiments that
incorporate the features of this invention. The disclosed
embodiment(s) merely exemplify the invention. The scope of
the invention is not limited to the disclosed embodiment(s).
The invention is defined by the claims appended hereto.

The embodiment(s) described, and references in the speci-
fication to “one embodiment”, “an embodiment”, “an
example embodiment”, etc., indicate that the embodiment(s)
described may include a particular feature, structure, or char-
acteristic, but every embodiment may not necessarily include
the particular feature, structure, or characteristic. Moreover,
such phrases are not necessarily referring to the same
embodiment. Further, when a particular feature, structure, or
characteristic is described in connection with an embodi-
ment, it is understood that it is within the knowledge of one
skilled in the art to effect such feature, structure, or charac-
teristic in connection with other embodiments whether or not
explicitly described.

1. SPEECH RECOGNITION PROCESS

FIG. 1 is an illustration of an exemplary flowchart of a
speech recognition process 100 according to an embodiment
of the present invention. Speech recognition process 100
includes a signal processing stage 110, an acoustic modeling
stage 120, a phoneme evaluation stage 130, and a word/
language/grammar modeling stage 140.

In signal processing stage 110, an analog signal represen-
tation of an incoming voice signal 105 can be filtered to
eliminate high frequency components of the signal that lie
outside the range of frequencies that the human ear can hear.
The filtered signal is then digitized using sampling and quan-
tization techniques well known to a person skilled in the
relevant art. One or more parametric digital representations
(also referred to herein as “feature vectors 115”) can be
extracted from the digitized waveform using techniques such
as, for example, linear predictive coding and fast Fourier
transforms. This extraction can occur at regular time inter-
vals, or frames, of approximately 10 ms, for example.

In acoustic modeling stage 120, feature vectors 115 from
signal processing stage 110 are compared to one or more
multivariate Gaussian probability distributions (also referred
to herein as “Gaussian probability distributions™) stored in
memory. The one or more Gaussian probability distributions
stored in memory can be part of an acoustic library, in which
the mixtures of Gaussian probability distributions represent
senones. A senone refers to a sub-phonetic unit for a language
of interest, as would be understood by a person skilled in the
relevant art. An individual senone can be made up of, for
example, 8 components, in which each of the components can
represent a 39-dimension Gaussian probability distribution.

Acoustic modeling stage 120 can process over 1000
senones, for example. As a result, the comparison of feature
vectors 115 to the one or more Gaussian probability distribu-
tions can be a computationally and memory intensive task, as
thousands of Gaussian probability distributions, for example,
can be compared to feature vectors 115 every time interval or
frame (e.g., 10 ms). A set of scores for each of the senones
represented in the acoustic library (also referred to herein as
“senone scores”) results from the comparison of each of
feature vectors 115 to each of the one or more Gaussian
probability distributions. Acoustic modeling stage 120 pro-
vides senone scores 125 to phoneme evaluation stage 130.

In phoneme evaluation stage 130, Hidden Markov Models
(HMMs) can be used to characterize a phoneme as a set of

20

40

45

50

55

4

states and an a priori set of transition probabilities between
each of the states, where a state is associated with a senone.
For a given observed sequence of senones, there is a most-
likely sequence of states in a corresponding HMM. This
corresponding HMM can be associated with an observed
phoneme. A Viterbi algorithm can be used to find the likeli-
hood of each HMM corresponding to a phoneme.

The Viterbi algorithm performs a computation that starts
with a first frame and then proceeds to subsequent frames
one-at-a-time in a time-synchronous manner. A probability
score is computed for each senone in the HMMs being con-
sidered. Therefore, a cumulative probability score can be
successively computed for each of the possible senone
sequences as the Viterbi algorithm analyzes sequential
frames. Similar to the calculation of senone scores by acous-
tic modeling stage 120, the calculation of the cumulative
probability score can be a computationally and memory
intensive task. Phoneme evaluation stage 130 provides the
phoneme likelihoods or probabilities 135 (also referred to
herein as a “phoneme score”) to word/language/grammar
modeling stage 140.

In word/language/grammar modeling stage 140, searching
techniques are used to determine a most-likely string of pho-
nemes and subsequent words, over time. Searching tech-
niques such as, for example, tree-based algorithms can be
used to determine the most-likely string of phonemes. As a
person skilled in the relevant art will understand, the Pho-
neme Evaluation stage can also be used to compute the scores
of HMMs of variable length which, for instance, represent a
sequence of phonemes, whole words, or Arcs of a Finite State
Transducer.

2. CONVENTIONAL SPEECH RECOGNITION
SYSTEM

FIG. 2 is an illustration of a conventional speech recogni-
tion system 200. Speech recognition system 200 includes an
input device 210, a processing unit 220, a memory device
230, and a data bus 240, all of which are separate physical
components. Memory device 230 can be, for example, a
Dynamic Random Access Memory (DRAM) device that is
external to processing unit 220 and in communication with
processing unit 220 via data bus 240. Input device 210 is also
in communication with processing unit 220 via data bus 240.
Data bus 240 has a typical bus width of, for example, 8 to 32
bits.

Input device 210 is configured to receive an incoming voice
signal (e.g., incoming voice signal 105 of FIG. 1) and convert
acoustical vibrations associated with the incoming voice sig-
nal to an analog signal. The analog signal is digitized using an
analog to digital converter (not shown in FIG. 2), and the
resulting digital signal is transferred to processing unit 220
over data bus 240. Input device 210 can be, for example, a
microphone.

Processing unit 220 is configured to process the digital
input signal in accordance with the signal processing stage
110, acoustic modeling stage 120, phoneme evaluation stage
130, and word/language/grammar modeler stage 140
described above with respect to FIG. 1. FIG. 3 is an illustra-
tion of speech recognition system 200 with speech recogni-
tion modules performed by processing unit 220. Processing
unit 220 includes signal processing module 310, acoustic
modeling module 320, phoneme evaluation module 330, and
word/language/grammar modeling module 340, which oper-
ate in a similar manner as signal processing stage 110, acous-

US 9,230,548 B2

5

tic modeling stage 120, phoneme evaluation stage 130, and
word/language/grammar modeler stage 140 of FIG. 1,
respectively.

In reference to FIG. 3, signal processing module 310 can
convert a digital input signal representation of incoming
voice signal 305 (e.g., from input device 210) into one or
more feature vectors 315. Acoustic modeling module 320
compares one or more feature vectors 315 to one or more
Gaussian probability distributions stored in an acoustic
library in memory device 230. That is, for each of the com-
parisons of one or more feature vectors 315 to the one or more
Gaussian probability distributions, processing unit 220
accesses memory device 230 via data bus 240. For an acoustic
library with thousands of senones (in which each of the
senones is composed of a plurality of Gaussian probability
distributions), not only are the comparisons performed by
acoustic modeling module 320 computationally-intensive but
the thousands of accesses to memory device 230 via data bus
240 by acoustic modeling module 320 are also memory-
intensive and time consuming. In addition, phoneme evalua-
tion module 330 also accesses memory device 230 for the
calculation of cumulative probability scores. The thousands
of'accesses to memory device 230 is further exacerbated by
the bus width of data bus 240 (e.g., typically 8 to 32 bits), in
which multiple accesses to memory device 230 may be
required by acoustic modeling module 320 phoneme evalua-
tion module 330. Further, interconnect parasitics associated
with data bus 240 may corrupt data transfer between memory
device 230 and acoustic modeling module 320 and between
memory device 230 and phoneme evaluation module 330.

Phoneme evaluation module 330 receives senone scores
325 from acoustic modeling module 320. As discussed above
with respect to speech recognition process 100 of FIG. 1,
HMMs can be used to characterize a phoneme as a set of
states and an a priori set of transition probabilities between
each of the states, where a state is composed of a sequence of
senones. The sets of states and a priori sets of transition
probabilities used by phoneme evaluation module 330 can be
stored in memory device 230. Phoneme evaluation module
330 provides phoneme scores 335 to word/language/gram-
mar modeling module 340.

Word/language/grammar modeling module 340 uses
searching techniques such as, for example, tree-based algo-
rithms to determine a most-likely string of phonemes (e.g.,
most-likely phoneme 335), and subsequent words, over time.

An issue with conventional speech recognition system 300
of FIG. 3, among others, is the significant load on processing
unit 220 due to the acoustic modeling and phoneme evalua-
tion processes. For example, for each comparison of one or
more feature vectors 315 to the one or more Gaussian prob-
ability distributions stored in memory device 230, memory
device 230 is accessed by processing unit 220. Similarly, in
the phoneme evaluation process, processing unit 220
accesses memory device 230 to retrieve state and a priori
transition probability information for the calculation of
cumulative probability scores. As a result, significant com-
puting and memory resources are dedicated to the acoustic
modeling and phoneme evaluation processes, in turn placing
a significant load on processing unit 220 and memory unit
230.

The load placed on processing unit 220 by the acoustic
modeling and phoneme evaluation processes affect the speed
at which processing unit 220 can process digital signals from
input device 210 as well as data from other applications (e.g.,
where processing unit 220 can operate in a multiuser/multi-
programming environment that concurrently processes data
from a plurality of applications). Further, for computing sys-

10

15

20

25

30

35

40

45

50

55

60

65

6

tems with limited memory resources (e.g., handheld devices),
the acoustic modeling and phoneme evaluation processes not
only place a significant load on processing unit 220, but also
consumes a significant portion of memory device 230 and
bandwidth of data bus 240. These issues, among others, with
processing capabilities, speed, and memory resources are
further exacerbated by the need to process incoming voice
signals in real-time or substantially close to real-time in many
applications.

3. SPEECH RECOGNITION SYSTEM WITH
PHONEME SCORE ACCELERATOR

Embodiments of the present invention address the issues
discussed above with respect to conventional speech recog-
nition systems 200 and 300 of FIGS. 2 and 3, respectively. In
an embodiment, the acoustic modeling process is performed
by a dedicated processing unit (also referred to herein as an
“Acoustic Co-Processor” or “ACP”). The ACP operates in
conjunction with processing unit 220 of FIG. 3 (also referred
to herein as a “Central Processing Unit” or “CPU”). For
example, the ACP receives one or more feature vectors (e.g.,
feature vectors 315 of FIG. 3) from the CPU, calculates a
senone score (e.g., senone score 325 of FIG. 3) based on one
or more Gaussian probability distributions, calculates a pho-
neme score based on the senone score, and outputs the pho-
neme score to the CPU.

In an embodiment, the one or more Gaussian probability
distributions and HMM information (e.g., HMM dictionary,
HMM state information, and a priori transition probability
information) can be stored in a memory device location in the
ACP. In another embodiment, the one or more Gaussian prob-
ability distributions and HMM information can be stored in a
dedicated memory device external to the ACP, in which the
ACP receives the one or more Gaussian probability distribu-
tions and HMM information from an external memory
device. The dedicated memory device is separate from system
memory associated with the CPU (e.g., memory device 230
of FIG. 3), according to an embodiment of the present inven-
tion. In yet another alternative, either the one or more Gaus-
sian probability distributions or HMM information can be
stored in the dedicated memory device external to the ACP, in
which the ACP receives the one or more Gaussian probability
distributions or HMM information from the external memory
device. Based on the architecture of the ACP, accelerated
calculations of senone scores and phoneme scores are
achieved.

The present disclosure is focused on the accelerated calcu-
lation of phoneme scores based on one or more senone scores.
Details on the accelerated calculation of senone scores can be
found, for example, in U.S. patent application Ser. No.
13/489,799, filed Jun. 6, 2012, titled “Acoustic Processing
Unit,” which is incorporated herein by reference in its
entirety.

Although portions of the present disclosure is described in
the context of a speech recognition system, a person skilled in
the relevant art will recognize that the embodiments
described herein are applicable to any data pattern recogni-
tion applications based on the description herein. These other
data pattern recognition applications include, but are not lim-
ited to, image processing, audio processing, and handwriting
recognition. These other data pattern recognition applications
are within the spirit and scope of the embodiments disclosed
herein.

FIG. 4 is an illustration of an embodiment of a speech
recognition process 400 performed by the ACP and CPU. In
an embodiment, the CPU performs a signal processing pro-

US 9,230,548 B2

7

cess 410 and a word modeling process 440. The ACP per-
forms an acoustic modeling process 420 and a phoneme
evaluation process 430. Signal processing process 410,
acoustic modeling process 420, phoneme evaluation process
430, and word/language/grammar modeling process 440
operate in a similar manner as signal processing stage 110,
acoustic modeling stage 120, phoneme evaluation stage 130,
and word/language/grammar modeler stage 140 of FIG. 1,
respectively, except as otherwise described herein.

In reference to the embodiment of FIG. 4, feedback 450 is
an optional feature of speech recognition process 400, in
which phoneme evaluation process 430 can provide an active
senone list to acoustic modeling process 420, according to an
embodiment of the present invention. Acoustic modeling pro-
cess 420 can compare one or more feature vectors to one or
more senones indicated in the active senone list.

In another embodiment, acoustic modeling process 420
can compare the one or more feature vectors to all of the
senones associated with an acoustic library. In this case, feed-
back 450 is not required, as phoneme evaluation process 430
receives an entire set of senone scores (e.g., “score all” func-
tion) from acoustic modeling process 420 for further process-
ing. Additional information on the “score all” function can be
found, for example, in U.S. patent application Ser. No.
13/489,799, filed Jun. 6, 2012.

4. ACOUSTIC CO-PROCESSOR
ARCHITECTURE

FIG. 5 is an illustration of an embodiment of an ACP 500.
In an embodiment, ACP 500 is an integrated chip that
includes an interface module 510, a Hidden Markov Model
(HMM) module 520, a Senone Scoring Unit (SSU) 530, and
a memory module 540. In another embodiment, interface
module 510, HMM module 520, SSU 530, and memory mod-
ule 540 can be each integrated on separate chips or integrated
on a common chip in any combination. For example and
without limitation, interface module 510 and HMM module
520 can be integrated on the same chip, while SSU 530 and
memory module 540 are integrated on their own respective
chips. Alternatively, interface module 510, HMM module
520, and SSU 530 can be integrated on the same chip, while
memory module 540 is integrated on its own chip.

ACP 500 is integrated on a separate chip as a CPU (not
shown in FIG. 5) and is in communication with the CPU via
input/output (/O) bus 505, in which ACP 500 is configured to
perform an acoustic modeling process (e.g., acoustic model-
ing process 420 of FIG. 4) and a phoneme evaluation process
(e.g., phoneme evaluation process 430 of FIG. 4), according
to an embodiment of the present invention. In an embodi-
ment, I/O bus 505 can be defined by an API, in which /O bus
505 can be used to facilitate the data transfer of feature vector
information, phoneme score information, and other /O con-
trol signals for ACP 500. ACP 500 can be configured to
receive one or more feature vectors (calculated by the CPU)
via /O bus 505 from the CPU and to transmit a phoneme
score via 1/O bus 505 to the CPU for further processing (e.g.,
word modeling process 440 of FIG. 4), according to an
embodiment of the present invention. In an embodiment, [/O
bus 505 can be implemented as, for example, an SPI bus, a
PCI bus, an AXI bus, an AHB, an APB, a memory bus, or any
other type of bus to provide a communication path between
ACP 500 and the CPU (see, e.g., FIGS. 5-7 and associated
description in U.S. patent application Ser. No. 13/489,799,
filed Jun. 6, 2012).

In reference to FIG. 5, interface module 510 is configured
to control data transfer between ACP 500 and an external

10

15

20

25

30

35

40

45

50

55

60

65

8

CPU. In anembodiment, interface module 510 can control the
receipt of one or more feature vectors and one or more HMM
scoring requests from the external CPU and the transmission
of'one or more phoneme scores (e.g., HMM state scores) from
ACP 500 to the CPU. In an embodiment, interface module
510 is configured to transfer the one or more feature vectors
from the CPU to SSU module 530 via bus 515 for further
processing, as well as transfer the one or more HMM scoring
requests from the CPU to HMM module 520 for further
processing. While SSU module 530 calculates one or more
senone scores for a frame of data and HMM module 520
traverses through an HMM (described in detail below), the
CPU searches for additional HMMs to evaluate and sends
additional HMM scoring requests to interface module 510,
according to an embodiment of the present invention. As
described below, the HMM scoring requests are received by
HMM module 520 in the form of a patch list.

Upon calculation of a senone score, the senone score is
transferred from SSU module 530 to memory module 540,
according to an embodiment of the present invention. In
another embodiment, the senone score is stored in a memory
device in SSU module 530 (not shown in FIG. 5). Detailed
information on the calculation of a senone score by SSU
module 530 can be found, for example, in U.S. patent appli-
cation Ser. No. 13/489,799, filed Jun. 6, 2012 (see, e.g., SSU
1430 of FIG. 14 and associated description). In an embodi-
ment, SSU module 530 calculates one or more senone scores
for a frame of data (e.g., 10 ms time interval or frame), while
the CPU calculates a patch list (described in further detail
below) for the same frame of data and transfers the patch list
to HMM module 520 via interface module 510.

FIG. 6 is an illustration of an embodiment of memory
module 540. Memory module 540 includes a memory con-
troller 610 and a memory device 620. In an embodiment,
memory controller 610 is configured to control data transfer
between interface module 510 and memory device 620 via
bus 545, between HMM module 520 and memory device 620
via bus 537, and between SSU module 530 and memory
device 620 via bus 535. Memory device 620 can be a volatile
memory device such as, for example and without limitation,
a Dynamic Random Access Memory (DRAM) device,
according to an embodiment of the present invention.
Memory device 620 can be used to store an acoustic library
(e.g., one or more Gaussian probability distributions), in
which SSU module 530 accesses memory device 620 via bus
535 during the calculation of a senone score, according to an
embodiment of the present invention. In an embodiment,
memory device 620 can also be used to store senone score and
HMM information (e.g., HMM dictionary, HMM state infor-
mation, and a priori transition probability information), in
which HMM module 520 accesses memory device 620 via
bus 537. Memory device 620 can also be used to store control
information received by ACP 500 from the CPU, in which the
control information can be transferred to memory device 620
viabus 545, according to an embodiment of the present inven-
tion.

FIG. 7 isan illustration of an embodiment of HMM module
520 configured to traverse a Hidden Markov Model. HMM
module 520 includes an HMM generator 710, a histogram
pruning module 720, an HMM scoring module 730, a histo-
gram generator 740, a pre-pruning module 750, an arc gen-
erator 760, a memory device 770, and a buffer 780. Based on
the description, a person of ordinary skill in the relevant art
will recognize that the components of HMM module 520 can
traverse the HMM in a pipelined manner.

HMM generator 710 is configured to receive arc data from
a patch list stored in bufter 780. In an embodiment, the arc

US 9,230,548 B2

9

data includes HMM IDs and initial HMM state scores that
ACP 500 receives from the CPU via I/O bus 505 in FIG. 5.
Prior to processing the arc data, HMM generator 710 verifies
whether the arc data exists in memory device 620 of FIG. 6,
according to an embodiment of the present invention. The arc
data stored in memory module 620 (e.g., HMM IDs and
HMM state scores) is also referred to herein as being in an
“active list” of ACP 500. Memory device 770 stores one or
more status bits corresponding to the state of the data in
memory device 620, and can be a memory device that has a
faster access time than memory device 620 of FIG. 6 such as,
for example and without limitation, a Static Random Access
Memory (SRAM) device.

If the arc data from the patch list exists in the active list,
then the arc data from the patch list is merged with its corre-
sponding arc data in the active list. In an embodiment, a left
context of the existing arc data in the active list is replaced
with the arc data from the patch list when the HMM state
score associated with the arc data from the patch list is higher
than the HMM state score associated with the existing arc
data in the active list (e.g., the arc data from the patch list has
a higher probability of matching the current frame of data).
Each of the HMM states includes a state index (K) and a left
context (K-1), where (K-1) refers to a state index prior to or
to the left of state index (K). If the arc data from the patch list
does not exist in the active list, then the arc data from the patch
list is inserted into the active list, in which the left context of
the new arc entry into the active list (e.g., (K-1)) is provided
by the arc data from the patch list. Further, the HMM ID
associated with the new arc entry (which is now in the active
list) can be read from memory device 620 (e.g., from a HMM
dictionary stored in memory device 620), according to an
embodiment of the present invention.

The process of determining whether the arc data from the
patch list exists in the active list and the process of merging
and inserting the arc data from the patch list into the active list
are described in further detail below in Section 5. Also, the
details on the application of the left context for the arc data is
described in further detail below with respect to HMM scor-
ing module 730.

In reference to FIG. 7, in an embodiment, HMM generator
710 re-formats the arc data from the patch list as individual
HMM states and outputs the individual HMM states to his-
togram pruning module 720. In addition to the individual
HMM states, histogram pruning module 720 receives a prun-
ing threshold (not shown in FIG. 7). Histogram pruning mod-
ule 720 is configured to apply a beam pruning algorithm to the
individual HMM states to help mitigate the amount of active
data in ACP 500, according to an embodiment of the present
invention. If the score of an individual HMM state is below
the pruning threshold, then the individual HMM state is
flagged as being “inactive” (e.g., active/inactive flag bit for
HMM state is set to “low” or “inactive”). Otherwise, if the
score of the individual HMM state is above the pruning
threshold, then the individual HMM state is flagged as being
“active.” In an embodiment, the pruning threshold is calcu-
lated based on a histogram distribution of data from the pre-
vious time interval or frame (e.g., 10 ms) and a predetermined
beam width.

In reference to FIG. 7, HMM scoring module 730 receives
the HMM states with scores above the pruning threshold set
by histogram pruning module 720 and one or more senone
scores from memory device 620 of FIG. 6. As discussed
above, the one or more senone scores are calculated by SSU
module 530 of FIG. 5 and can be stored in memory device 620
of FIG. 6. A bus between memory device 620 and HMM
scoring module 730 is not shown in FIG. 7. Alternatively, in

10

15

20

25

30

35

40

45

50

55

60

65

10

another embodiment, the one or more senone scores can be
stored elsewhere such as, for example and without limitation,
within SSU module 530. Here, SSU module 530 can transfer
the one or more senone scores to HMM scoring module 730
via bus 525. SSU module 530 calculates one or more senone
scores prior to the calculation of HMM state scores by HMM
scoring module 730, according to an embodiment of the
present invention.

In an embodiment, HMM scoring module 730 applies the
following equation to compute an HMM state score for each
of'the HMM states above the pruning threshold:

Scoreg ;=MAX(Scoreg - j,Scoreg | 7)+
Scor CSENONE, AK),

where K is an HMM state index of a given ARC and T is a time
frame or interval (e.g., time frames or intervals of 10 ms). In
an embodiment, the HMM states of a given ARC above the
pruning threshold are sequentially received by HMM scoring
module 730 (i.e., K-2,K-1, K, K+1,K+2, ...). Further, in an
embodiment, the score of the left context HMM state (K-1)is
available during the calculation of the current HMM state
score (K), where the maximum of the scores between
Scorey ., and Scoreg_) ;. is added to the senone score
corresponding to the state index (K).

Prior to calculating the HMM state score for the current
state index (K), the HMM state scores associated with the
inactive HMM states (e.g., the HMM states associated with
scores below the pruning threshold set by histogram pruning
module 720) are set to a minimum probability value such as,
for example and without limitation, the lowest value associ-
ated with a particular data format, according to an embodi-
ment of the present invention. For example, if the HMM state
score is stored in a 16-bit data format, then the lowest value
associated with this format is 0. If the HMM state score for the
current state index (K) is higher than the minimum probabil-
ity value (e.g., 0), then the HMM state is flagged as being
“active,” according to an embodiment of the present inven-
tion. Otherwise, the HMM state maintains its “inactive” sta-
tus.

In reference to FIG. 7, histogram generator 740 is config-
ured to generate a distribution of HMM state scores to be used
to calculate the pruning threshold for the next time interval or
frame. In an embodiment, histogram generator 740 receives
HMM states with the “active” status from HMM scoring
module 740, the best HMM state score from the previous
frame of data (e.g., maximum HMM state score from the
previous frame of data), and bin width information. The bin
width information can include the number of bins and the
width of each ofthe bins, in which the active HMM states are
distributed into the bins. In an embodiment, the number of
bins and the width of each of the bins are pre-defined and
provided by the CPU to ACP 500.

Prior to the binning process, the scores of the active HMM
states are updated by subtracting the best HMM state score
from the previous frame of data from each of the active HMM
state scores, according to an embodiment of the present
invention. In an embodiment, the HMM states with updated
scores less than zero are placed in a first bin and the HMM
states with updated scores greater than zero are placed in a
second bin. After all of the active HMM states have been
binned, the distributions of the active HMM states are sent to
the CPU for calculation of the next pruning threshold used in
histogram pruning module 720. In another embodiment, his-
togram generator 740 is used to calculate the next pruning
threshold used in histogram pruning module 720. The calcu-
lation of the pruning threshold is known to a person of ordi-
nary skill in the art.

US 9,230,548 B2

11

In reference to FIG. 7, pre-pruning module 750 is config-
ured to receive HMM states with the “active” status from
HMM scoring module 730 and a pre-pruning threshold. In an
embodiment, the pre-pruning threshold is calculated by the
CPU and transferred to ACP 500 of FIG. 5, where the pre-
pruning threshold is a function of the pruning thresholds from
one or more previous frames of data. In another embodiment,
the pre-pruning threshold can be generated by pre-pruning
module 750. If the score associated with an active HMM state
is below the pre-pruning threshold, then the status of the
HMM state is changed from “active” to “inactive.” Further
details on the calculation of the pre-pruning threshold are
described below in Section 6.

Arc generator 760 is configured to receive HMM states
with the “active” status from pre-pruning module 750—i.e.,
HMM states with scores above the pre-pruning threshold. In
an embodiment, arc generator 760 is configured to determine
whether the current HMM state is the last state of the HMM,
where the HMM has N number of states (e.g., N=3). If the
current HMM state is the last state in the HMM and also has
an “active” status, then the HMM state is written to buffer
780, according to an embodiment of the present invention.
The HMM state information is transferred from buffer 780 to
the CPU via interface module 510 of FIG. 5 for further pro-
cessing. If the current HMM state is not the last state in the
HMM and also has an “active” status, then the HMM state
information is hashed and inserted into the active list (e.g.,
datais hashed and stored in memory device 620 of FIG. 6 with
status information stored in memory device 770 of FIG. 7).
Unlike conventional speech recognition systems 200 and 300
of FIGS. 2 and 3, respectively, a dedicated memory device
(e.g., memory device 620 of FIG. 6 and memory device 770 of
FIG. 7) is used to store the active list such that a dedicated
HMM scoring module (e.g., HMM module 520 of FIG. 5) is
used to calculate HMM state scores rather than using system
memory (e.g., memory device 230 of FIG. 2)and aCPU (e.g.,
processing unit 220), thus reducing the load placed on the
CPU and the system memory. In turn, the CPU can process
digital signals from other applications, where the CPU can
operate in a multiuser/multiprogramming environment that
concurrently processes data from a plurality of applications.

FIG. 8 is an illustration of a method 800 for acoustic signal
processing. The steps of method 800 can be performed using,
for example, ACP 500 of FIG. 5.

In step 810, one or more feature vectors and HMM infor-
mation are received from an external computing device (e.g.,
a CPU in communication with ACP 500 via /O bus 505 of
FIG. 5). The HMM information can include, for example, an
HMM dictionary, HMM state information, and a priori tran-
sition probability information.

In step 820, one or more senone scores are calculated based
on the one or more feature vectors. The one or more senone
scores can be calculated using a SSU such as, for example, the
SSU disclosed in U.S. patent application Ser. No. 13/489,799,
filed Jun. 6, 2012 (see, e.g., SSU 1430 of FIG. 14 and asso-
ciated description). In an embodiment, the one or more
senone scores for a frame of data are calculated while the
external computing device generates a patch list for the frame
of data. The patch list is transferred from the external com-
puting device to the HMM module (see step 830 below).
Further, the patch list can include a first plurality of HMM IDs
and HMM state scores that are not stored in an active list of a
second plurality of HMM IDs and HMM state scores (see,
e.g., the active list described above with respect to HMM
generator 710 of FIG. 7).

In step 830, one or more HMM state scores are calculated
based on the one or more senone scores. The one or more

10

15

20

25

30

35

40

45

50

55

60

65

12

HMM state scores can be calculated using an HMM module
such as, for example, HMM module 520 of FIG. 5. In an
embodiment, the one or more senone scores (see step 820) are
calculated prior to the calculation of the one or more HMM
state scores.

In step 840, the one or more HMM state scores are stored in
a memory module, where the memory module, SSU, and
HMM module are integrated on a first chip and the external
computing device is integrated on a second chip—the first
chip is separate from the second chip. The memory module
can be, for example, memory module 540 of FIG. 5.

In step 850, the one or more HMM state scores are trans-
ferred to the external computing device. The one or more
HMM state scores can be transferred to the external comput-
ing device using an interface module such as, for example,
interface module 510 of FIG. 5.

Embodiments of the present invention address and solve
the issues discussed above with respect to conventional
speech recognition system 200 of FIG. 3. In summary, the
phoneme evaluation process is performed by, for example,
ACP 500 of FIG. 5. The ACP operates in conjunction with a
CPU, in which the ACP can receive one or more feature
vectors (e.g., feature vectors 315 of FIG. 3) from the CPU,
calculate a senone score (e.g., senone score 325 of FIG. 3)
based on one or more Gaussian probability distributions,
calculate a phoneme score based on the senone score, and
output a phoneme score to the CPU. In an embodiment, the
one or more Gaussian probability distributions and one or
more HMMs can be stored in a memory device located in the
ACP. Alternatively, in another embodiment, the one or more
Gaussian probability distributions and HMMs can be stored
in a dedicated memory device external to the ACP, in which
the ACP receives the one or more Gaussian probability dis-
tributions and HMMs from an external memory device.
Based on embodiments of the ACP architecture described
above, accelerated calculations for the senone and phoneme
scores are achieved.

5. HASHING AND INSERTING OF ARC DATA IN
ACTIVE LIST

As discussed above in Section 4, HMM generator 710
receives arc data from a patch list stored in buffer 780 of F1G.
7. The following section describes embodiments of hashing
and inserting the arc data from the patch list into an active list
of'a memory device (e.g., memory device 770 of FIG. 7). For
explanation purposes, the embodiments below are described
in the context of a speech recognition application. However,
based on the description herein, a person of ordinary skill in
the art will recognize that these embodiments can be applied
to other applications such as, for example and without limi-
tation, image processing, audio processing, and handwriting
recognition. These other applications are within the spirit and
scope of the embodiments disclosed herein.

A. Hash Table Structure

FIG. 9 is an illustration of a hash table 900 according to an
embodiment of the present invention. Hash table 900 can be
implemented, for example, in memory device 620 of FIG. 6
and memory device 720 of FIG. 7, as will be described in
further detail below. Hash table 900 includes two memory
blocks, first block 910 and second block 960. In an embodi-
ment of the present invention, second block 960 can have a
smaller memory capacity than first block 910. For example,
second bock 960 can contain fewer memory entries than first
block 910. Second block 960 can also contain fewer status
bits for each entry than first block 910. In contrast, a larger
data format (e.g., number of data bits) can be required for each

US 9,230,548 B2

13

entry in first block 910 as compared to each entry in second
block 960. For example, each entry in first block 910 can
contain HMM information whereas each entry in second
block 960 can contain a status or flag bit information.

In view of the above characteristics of first block 910 and
second block 960, these memory blocks can be implemented
in a data pattern system to achieve, for example, a faster,
cheaper, power efficient implementation. For example, first
block 910 and second block 960 can be implemented on
separate memory devices (or chips), where second block 960
is implemented on a smaller memory device with a faster
access time than the memory device of first block 910. As a
result, system performance can be improved by processing
the information in second block 960 first to determine if the
information in first block 910 is valid and has already been
processed before accessing first block 910. A speech recog-
nition system implementing hash table 900 can, thus, limit the
number of times it must access first block 910. Based on the
description herein, a person of ordinary skill in the art will
recognize that hash table 900 can be implemented on other
systems. These other systems are within the scope and spirit
of the present invention.

In an embodiment of the present invention, first block 910
is implemented in a DRAM device, and second block 960 is
implemented in a SRAM device. As would be understood by
aperson of ordinary skill in the art, SRAM devices have faster
access times (e.g., read and write access times) than DRAM
devices. However, DRAM devices have a smaller chip foot-
print, and are cheaper to manufacture at higher memory den-
sities than SRAM devices. Thus, with the tradeoffs between
SRAM and DRAM devices, a system implementing hash
table 900 gains the advantages of, for example, the speed of
the SRAM device to minimize the number of accesses to the
slower DRAM device, while also taking advantage of the
smaller size and lower cost of the DRAM device to store the
majority of the data used by the system.

In reference to FIG. 9, each entry in first block 910 corre-
sponds to an entry in second block 960, as indicated by dotted
lines 915,-915., according to an embodiment of the present
invention. That is, an index value associated with an entry in
second block 960 has the same index value as its correspond-
ing entry in first block 910 such that there is one-to-one
mapping between first block 910 and second block 960 with
respectto the data stored in first block 910. In an embodiment,
each entry in first block 910 includes data and information
regarding the memory location of overflow data. In an
embodiment, if the data to be stored in first block 910 is too
large to fit in a single entry, the extra data is stored in an
overflow section 970. This allows hash table 900 to maintain
the mapping between entries in second block 960 and first
block 910. In another embodiment, overflow section 170 is
optional and is not allocated memory space in first block 910.

The entries in first block 910 can be organized in multiple
ways. For example, each entry in first block 910 can include
arc data 920, score 930, an overflow pointer 940, and an
overflow length 950 as shown in FIG. 9. Data 920 can repre-
sent HMM information used by speech recognition applica-
tions such as, for example, the HMM information used in
ACP 500 of FIG. 5, according to an embodiment of the
present invention. In an embodiment, the arc data 920
includes HMM IDs. Score 930 includes the current state
scores for the HMM, i.e., the HMM state scores for the
currently processed states. Overflow pointer 940 can point to
amemory location in overflow section 970 of first block 910,
which stores any portion of data 930 that could not be stored
in an entry of first block 910. Overtlow length 950 can be used

20

30

40

45

55

14

to identify how much extra data is stored in overflow section
970 for a particular entry in first block 910.

In an embodiment, each hash entry in second block 960
includes multiple status bits that indicate whether the corre-
sponding entry in first block 910 needs to be accessed and
whether further processing is required for the information
stored in the corresponding entry in first block 910. For
example, in the speech recognition context, two bits can be
stored for each entry in second block 960 as shown in FIG. 9.
In an embodiment, the first bit (also referred to herein as
“valid bit 980”) can indicate whether the corresponding entry
in first block 910 is valid (e.g., data resides in that memory
location for a particular frame of data). The second bit (also
referred to herein as “scored bit 990”) can indicate whether
the corresponding entry in first block 910 has already been
scored for a particular frame of data (e.g., HMM state score),
according to an embodiment of the present invention.

B. Hash Table Procedures

FIGS. 10, 11, and 12 are illustrations of hash table pro-
cesses according to embodiments of the present invention.
FIG. 10 is an illustration of a hash table search process 1000.
FIG. 11 is an illustration of a hash table insertion process
1100. FIG. 12 is an illustration of a hash table residual active
process 1200.

i. Hash Table Search Procedure

Hash table search process 1000 can be performed using, for
example, ACP 500 of FIG. 5. Hash table search process 1000
includes data reception step 1002, hash key generation step
1004, check valid bit step 1006, not found step 1008, data read
step 1010, comparison step 1012, set scoring bit step 1014,
process data step 1016, and incrementor step 1018.

In data reception step 1002, an iteration count is set to ‘0’
and data is received (e.g., by ACP 500 of FIG. 5). In reference
to ACP 500 of FIG. 5, this data may be one or more feature
vectors representing a sound that is part of a larger frame and
arc data in a patch list. In an embodiment, arc data from the
patch list includes HMM information, where the patch list is
provided to ACP 500 from an external computing device (e.g.,
a CPU in communication with ACP 500 via /O bus 505 of
FIG. 5).

In hash key generation step 1004, a hash key is generated
by executing a hash function on the arc data (from step 1002),
in which the hash key provides an index to the hash table. In
an embodiment, the hash table refers to the active list
described above with respect to HMM generator 710 of FIG.
7.1n an embodiment, the hash table (or active list) is stored in
memory device 620 of FIG. 6. The hash function is performed
on the arc data from the patch list, where the result of the hash
function provides an index to the hash table to which the arc
data corresponds, according to an embodiment of the present
invention.

In an embodiment, the hash function can be a broken down
into two separate hash functions. An example of a hash func-
tion that is made up of two separate hash functions is shown
in the following equation:

H(x)=(H1(x)+*H2(x))mod p

The first hash function H1(x) generates a first temporary
value based on the arc data from the patch list. The second
hash function H2(x) generates a second temporary value
based on the arc data, in which the second hash function
H2(x) is multiplied by a count i. The count i can represent the
number of times the hash function H(x) has been calculated.
The results of the two hash functions are combined, as shown
in the equation above, to create an index into the hash table,
according to an embodiment of the present invention.

US 9,230,548 B2

15

In an embodiment, the two hash functions can be designed
so that when data is hashed, for example arc data from the
patch list, the results are randomly distributed over the entire
hash table. One of many benefits of this type of design is a
reduction in the number of collisions while storing data to the
hashtable, thereby increasing the speed and efficiency ofhash
table search process 1000 and hash table insertion process
1100, discussed below. For example, the first hash function
H(x) can randomly distribute the data over the entire hash
table, thus mitigating against data being allocated to the same
memory index. This decreases the overall time required to
store the data being hashed. The second hash function H2(x)
can create a random step used to determine the next hash
index, in case of a collision, mitigating the effects of sequen-
tial collisions. This decreases the time to find an available
memory index, in case of a collision.

In check valid bit step 1006, a status bit is read from second
block 960 of FIG. 9, such as, for example, valid bit 980. This
status bit identifies whether the corresponding entry in first
block 910 is valid. In an embodiment, an entry in first block
910 is valid if there is data stored in the entry for the current
frame of data; otherwise, if there is no data, then the entry is
not valid. Check valid bit step 1006 determines if the valid bit
is set (i.e., the corresponding entry in first block 910 contains
data for the current frame of data) or clear (i.e., the corre-
sponding entry in first block 910 does not contain data for this
frame).

Storing a valid bit in second block 960 (e.g., valid bit 980)
indicating whether a corresponding entry in first block 910 is
valid provides at least two benefits. First, where first block
910 has a slower access time than second block 960, the valid
bit in second block 960 provides a quick way to determine if
first block 910 needs to be accessed. Second, by storing valid
bits separately in a memory device with a faster access time
(e.g., SRAM device), the memory device can quickly invali-
date the entries in both memories (e.g., memory device 620 of
FIG. 6 and memory device 770 of FIG. 7) by accessing the
faster memory device that includes second block 960 and
clearing all valid bits in second block 960. This is useful, for
example, when the hash table needs to be prepared to accept
data for anew frame of data. For example, in reference to ACP
500 of FIG. 5, once HMM state scores for a frame of data are
calculated, this allows ACP 500 to quickly invalidate the
entire table in preparation for a new frame of data.

If the valid bit in second block 960 for the index of this
iteration is clear (e.g., the corresponding entry in first block
910 does not contain data), process 1000 continues to not
found step 1008. In not found step 1008, process 1000 indi-
cates that the data was not found in the hash table.

In reference to FIG. 10, in check valid bit step 1006, if the
entry in second block 960 for the index for this iteration
indicates this entry is valid (e.g., the corresponding entry in
first block 910 contains data), process 1000 continues to
stored data read step 1010. The stored data is read from the
corresponding entry in first block 910 for this index. In an
embodiment, due to the nature of creating a hash key from the
arc data, there are two scenarios in which the valid bit is set.
First, the arc data could have been received for a previous
frame by, for example, ACP 500 of FIG. 5. If so, the arc data
would have resulted in the same hash key as the previously-
received arc data and been stored in the same hash entry.
Second, different arc data may have been received that
resulted in the same hash key, either in the first hashing
iteration or in subsequent iterations. Before proceeding, it
must be determined if the current arc data has been stored in
the table entry or if different arc data was stored in the table

40

45

16

entry. Thus, at comparison step 1012, the stored arc data is
compared to the received arc data.

Inreference to FIG. 10, if the stored arc data is not the same
as the received arc data, process 1000 returns to step 1004 to
execute another iteration of the hashing function. In this case,
the received arc data is different from the stored arc data;
however, the received arc data resulted in the same key as the
stored arc data when processed by the hash function. In order
to create a different hash key for the received arc data, process
1000 continues to incrementor step 1018, where the iteration
count i is incremented.

If the stored arc data is the same as the received arc data,
process 1000 continues to set scoring bit step 1014, where
scored bit 990 is set for this index in second block 960.
Process 1000 then continues to process data step 1016, where
the data is processed and scored.

ii. Hash Table Insertion Procedure

Hash table insertion process 1100 can be performed using,
for example, ACP 500 of FIG. 5. Hash table insertion process
1100 includes data reception step 1102, hash key generation
step 1104, check valid bit step 1106, write data step 1108, set
valid bit step 1110, and incrementor step 1112.

Data reception step 1102 and hash generation step 1104
receive data and generate a hash key in the same manner as
data reception step 1002 and hash generation step 1004,
respectively, as described above.

In check valid bit step 1106, a status bit is read from second
block 960 of FIG. 9 such as, for example, valid bit 980. This
status bit identifies whether the corresponding entry in first
block 910 is valid. In an embodiment, an entry in first block
910 is valid if there is data stored in the entry for the current
frame of data; otherwise, if there is no data, then the entry is
not valid. Check valid bit step 1106 determines if the valid bit
is set (e.g., the corresponding entry in first block 910 contains
data for the current frame of data) or clear (e.g., the corre-
sponding entry in first block 910 does not contain data for this
frame).

As described above, it is beneficial to store a valid bit in
second block 960 (e.g., valid bit 980) indicating whether a
corresponding entry in first block 910 is valid. As discussed
above, storing the valid bit in second block 960, correspond-
ing to an entry in first block 910, provides at least two benefits.
First, if provides a quick way to determine which entry in the
first block 910 needs to be accessed, especially when access
to second block 960 is faster than access to first block 910.
Second, it provides a fast and effective way to invalidate all
entries in both first block 910 and second block 960.

If the valid bit in second block 960 for the index of this
iteration is set (e.g., the corresponding entry in first block 910
contains data), process 1100 executes another iteration of the
hashing function to identify a different location to insert the
data. In order to create a different hash key for the received arc
data, process 1100 continues to incrementor step 1112, where
the iteration count is incremented.

In reference to FIG. 11, in check valid bit step 1106, if the
entry in second block 960 for the index for this iteration
indicates this entry is invalid (e.g., the corresponding entry in
first block 910 does not contain data), process 1100 continues
to write data step 1108. The received data is stored in first
block 910. Process 1100 continues to set valid bit step 1110,
where the valid bit corresponding to this entry is set in second
block 960. This indicates, for future searches, that this entry
now contains valid data.

iii. Hash Table Residual Active Procedure

FIG. 12 is an illustration of a hash table residual active
process 1200 according to an embodiment of the present
invention. In the speech recognition context, after the arc data

US 9,230,548 B2

17

from the patch list has been processed (e.g., by HMM module
520 of FIG. 5), unprocessed arc data in the active list may
exist (also referred to herein as “residual data”). Process 1200
scans the active list (e.g., stored in memory device 770 of FIG.
7) to identify HMMs that are valid (e.g., valid bit 980 is set)
but have not been scored. The HMM data is then retrieved
from memory (e.g., memory device 540 of FIG. 5) and
scored. Process 1200 includes an initialization step 1210, a
second block read step 1220, a first block read step 1250, a
scoring step 1260, an incrementor step 1270, a final step
1295, and three comparison steps 1230, 1240, and 1290.

In initialization step 1210, a table index is set to zero. In
second block read step 1220, valid bit 980 and scored bit 990
are read from the table index of second block 960 of FIG. 9.
In comparison step 1230, process 1200 determines if valid bit
980 is set or clear.

If valid bit 980 is clear, this is an indication that no data has
been stored for the entry in the hash table. Therefore, process
1200 continues to incrementor step 1270, which will be dis-
cussed below.

It valid bit 980 is set, indicating that there is arc data in the
hash table, process 1200 continues to comparison step 1240.
In comparison step 1240, it is determined if scored bit 990 is
set or clear.

If scored bit 990 is set, this is an indication that the arc data
has already been scored. Therefore, no further processing is
required, and process 1200 continues to incrementor step
1270, which will be discussed below.

If scored bit 990 is clear, process 1200 continues to first
block read step 1250. In first block read step 1250, process
1200 reads the arc data from the index in first block 910 of
FIG. 9. Once the arc data has been read in first block read step
1250, process 1200 continues to scoring step 1260 where the
stored arc data is scored. Process 1200 then continues to
incrementor step 1270.

In incrementor step 1270, valid bit 980 and scored bit 990
in second block 960 are cleared for the current index, and then
the index is incremented. Process 1200 then continues to
comparator step 1290.

In comparator step 1290, the new index (e.g., incremented
index) is compared to the size of the hash table. If the index is
equal to or greater than the size of the hash table, process 1200
is complete. If not, process 1200 returns to second block read
step 1220 to analyze information related to the new index.

6. PRE-PRUNING

As discussed above with respect to FIG. 7, pre-pruning
module 750 receives active HMM states from HMM scoring
module 740 and a pre-pruning threshold. In an embodiment,
the pre-pruning threshold is calculated by the CPU and trans-
ferred to ACP 500 of F1G. 5, where the pre-pruning threshold
is a function of the pruning threshold from one or more
previous frames of data. In another embodiment, the pre-
pruning threshold can be generated by pre-pruning module
750 of FIG. 7.

Pruning provides a way to reduce the resources required to
process speech by early detection of which HMMS are
unlikely to represent the speech being analyzed. This is
important given the processing resources and memory allo-
cated to the speech recognition process; especially as acoustic
models grow to more accurately model language. Pruning
thresholds are used to determine which HMMs are retained
for further processing in the speech recognition process based
on the probability that the HMMs represent the speech being
analyzed.

10

15

20

25

30

35

40

45

50

55

60

65

18

In an embodiment, speech processing systems prune
HMM states at two different times. First, systems can prune
HMM states after the HMM states have been processed and
scored but before the next frame of data is analyzed. This
pruning process is also referred to herein as “pre-pruning.”
Second, systems can prune HMM states prior to the calcula-
tion of HMM state scores. Because pruning occurs after the
HMM states have been processed and scored from the previ-
ous frame, the pruning threshold can be chosen such that only
a certain number of HMM states, for example 1000, is ana-
lyzed with respect to the current frame of data.

The following discussion focuses on the pre-pruning pro-
cess of a speech recognition system. The pre-pruning process
can be performed by, for example, pre-pruning module 750 of
FIG. 7. Pre-pruning allows the system to remove HMM states
before they are stored in memory (e.g., memory device 620 of
FIG. 6). Typically, a user of the speech recognition system
selects a constant value for the pre-pruning threshold to deter-
mine which HMM states are stored in memory. Because the
pre-pruning threshold is constant and chosen before the
HMM processing starts, it must be large enough such that a
sufficient number of HMM states are available for fluctua-
tions in sound quality (in this description, lower HMM state
scores represent higher probabilities). These fluctuations can
be accounted for in the constant value for the pre-pruning
threshold. Typically, the value of the pre-pruning threshold is
conservatively setto a large number for speech recognition on
low-sound quality environments. The constant value for the
pre-pruning threshold does not adjust for speech recognition
in high-sound quality environments, which typically has
lower HMM state scores.

In reference to FIG. 7, pre-pruning module 750 flags an
HMM state as “inactive” if the corresponding HMM state
score is worse, e.g., less, than a pre-pruning threshold. In an
embodiment, the pre-pruning threshold can be adjusted based
on the pruning thresholds (e.g., pruning threshold applied by
histogram pruning module 720 of FIG. 7) for the previous N
frames, where N is a positive integer. By using an adjustable
pre-pruning threshold which is based on the pruning thresh-
old of one or more previous frames of data, the adjustable
pre-pruning threshold can be calibrated to prune some, but
not all, of the HMM states independent of the sound quality
(e.g., low-sound quality environment versus high-sound
quality environment). The adjustable pre-pruning threshold
can either be provided by processing unit 220 of FIG. 2, or can
be calculated within pre-pruning module 750 of FIG. 7, after
receiving one or more previous pruning thresholds from pro-
cessing unit 220. Pre-pruning module 750 of FIG. 7, can also
receive HMM state scores for one or more previous frames of
data from histogram generator 740 (via HMM scoring mod-
ule 730) and senone scores from SSU 530 of FIG. 5.

In an embodiment, an adjustable pre-pruning threshold is a
function of an HMM state score from a previous frame of data
and a pruning threshold from the previous frame of data. The
adjustable pre-pruning threshold can be defined by the fol-
lowing equation:

P, PRE,T+1:SCOI eBESTJJMM,T‘*'ATn

Pprz, rn1=Actual pre-pruning threshold for Frame T+1;
Scoregrsr. ramg, 7= Lhe best HMM state score from Frame
T; and
A=A currently calculated pre-pruning threshold based
on the pruning threshold of one or more previous frames
of data.
In summary, based on the above equation, the adjustable
pre-pruning threshold is the sum of a processed HMM state
score, for instance the best HMM score, from the previous

US 9,230,548 B2

19

frame of data and the pruning thresholds from one or more
previous frames of data, according to an embodiment of the
present invention. The calculated pre-pruning threshold can
be backed off based on one or more senone scores of Frame
T+1 or by one or more histogram bins.

In another embodiment, the adjustable pre-pruning thresh-
old is a function of one or more senone scores from a previous
frame of data, one or more senone scores from a current frame
of data, or one or more histogram bins. This can be used in
addition to a processed HMM state score from the previous
frame of data and the pruning threshold from one or more
previous frames of data. The adjustable pre-pruning threshold
can be defined by the following equation:

Ppre, 141750t g s T mame, 7+ SCOTe g s T sENONE A T4 1

Pprg, i =Actual pre-pruning threshold for Frame T+1;

Scorezrsr, mamg, 7~ Lhe best HMM state score from Frame

Scorezrsr, sevonz=A possible back-off value based on one
or more senone scores of Frame T+1, one or more
senone scores of Frame T, or one or more histogram
bins; and,

Ay, ,=A currently calculated pre-pruning threshold based
on the pruning threshold of one or more previous frames
of data.

In an embodiment, the processed HMM state score can be
the score for the best HMM. The senone scores can be a
senone from a current frame of data or from a previous frame
of'data, according to an embodiment of the present invention.
In an embodiment, the senone score can be the best senone
score from a previous frame or the best senone score from the
current frame. In an embodiment, the senone score can also be
modified by the width of one or more bins of the histogram.
For example, if pruning in the previous frame passed K bins,
the back-off value could be used to pass K+1 or K+2 bins in
the pre-pruning phase of the current frame.

7. EXEMPLARY COMPUTER SYSTEM

Various aspects of the present invention may be imple-
mented in software, firmware, hardware, or a combination
thereof. FIG. 13 is an illustration of an example computer
system 1300 in which embodiments of the present invention,
or portions thereof, can be implemented as computer-read-
able code. For example, the method illustrated by flowchart
800 of FIG. 8, the method illustrated by flowchart 1000 of
FIG. 10, the method illustrated by flowchart 1100 of FIG. 11,
and/or the method illustrated by flowchart 1200 of FIG. 12
can be implemented in system 1300. Various embodiments of
the present invention are described in terms of this example
computer system 1300. After reading this description, it will
become apparent to a person skilled in the relevant art how to
implement embodiments of the present invention using other
computer systems and/or computer architectures.

It should be noted that the simulation, synthesis and/or
manufacture of various embodiments of this invention may be
accomplished, in part, through the use of computer readable
code, including general programming languages (such as C or
C++), hardware description languages (HDL) such as, for
example, Verilog HDL, VHDL, Altera HDL (AHDL), or
other available programming and/or schematic capture tools
(such as circuit capture tools). This computer readable code
can be disposed in any known computer-usable medium
including a semiconductor, magnetic disk, optical disk (such
as CD-ROM, DVD-ROM). As such, the code can be trans-
mitted over communication networks including the Internet.

15

20

25

30

35

40

45

55

20

It is understood that the functions accomplished and/or struc-
ture provided by the systems and techniques described above
can be represented in a core (e.g., a ACP core) that is embod-
ied in program code and can be transformed to hardware as
part of the production of integrated circuits.

Computer system 1300 includes one or more processors,
such as processor 1304. Processor 1304 may be a special
purpose or a general-purpose processor such as, for example,
the ACP and CPU of FIG. 4, respectively. Processor 1304 is
connected to acommunication infrastructure 1306 (e.g., a bus
or network).

Computer system 1300 also includes a main memory 1308,
preferably random access memory (RAM), and may also
include a secondary memory 1310. Secondary memory 1310
can include, for example, a hard disk drive 1312, a removable
storage drive 1314, and/or a memory stick. Removable stor-
age drive 1314 can include a floppy disk drive, a magnetic
tape drive, an optical disk drive, a flash memory, or the like.
The removable storage drive 1314 reads from and/or writes to
a removable storage unit 1318 in a well-known manner.
Removable storage unit 1318 can comprise a floppy disk,
magnetic tape, optical disk, etc. which is read by and written
to by removable storage drive 1314. As will be appreciated by
persons skilled in the relevant art, removable storage unit
1318 includes a computer-usable storage medium having
stored therein computer software and/or data.

Computer system 1300 (optionally) includes a display
interface 1302 (which can include input and output devices
such as keyboards, mice, etc.) that forwards graphics, text,
and other data from communication infrastructure 1306 (or
from a frame buffer not shown) for display on display unit
1330.

In alternative implementations, secondary memory 1310
can include other similar devices for allowing computer pro-
grams or other instructions to be loaded into computer system
1300. Such devices can include, for example, a removable
storage unit 1322 and an interface 1320. Examples of such
devices can include a program cartridge and cartridge inter-
face (such as those found in video game devices), a removable
memory chip (e.g., EPROM or PROM) and associated socket,
and other removable storage units 1322 and interfaces 1320
which allow software and data to be transferred from the
removable storage unit 1322 to computer system 1300.

Computer system 1300 can also include a communications
interface 1324. Communications interface 1324 allows soft-
ware and data to be transferred between computer system
1300 and external devices. Communications interface 1324
can include a modem, a network interface (such as an Ether-
net card), acommunications port,a PCMCIA slot and card, or
the like. Software and data transferred via communications
interface 1324 are in the form of signals which may be elec-
tronic, electromagnetic, optical, or other signals capable of
being received by communications interface 1324. These sig-
nals are provided to communications interface 1324 via a
communications path 1326. Communications path 1326 car-
ries signals and can be implemented using wire or cable, fiber
optics, a phone line, a cellular phone link, a RF link or other
communications channels.

In this document, the terms “computer program medium”
and “computer-usable medium” are used to generally refer to
media such as removable storage unit 1318, removable stor-
age unit 1322, and a hard disk installed in hard disk drive
1312. Computer program medium and computer-usable
medium can also refer to memories, such as main memory
1308 and secondary memory 1310, which can be memory
semiconductors (e.g., DRAMs, etc.). These computer pro-
gram products provide software to computer system 1300.

US 9,230,548 B2

21

Computer programs (also called computer control logic)
are stored in main memory 1308 and/or secondary memory
1310. Computer programs may also be received via commu-
nications interface 1324. Such computer programs, when
executed, enable computer system 1300 to implement
embodiments of the present invention as discussed herein. In
particular, the computer programs, when executed, enable
processor 1304 to implement processes of embodiments of
the present invention, such as the steps in the method illus-
trated by flowchart 800 of FIG. 8, the method illustrated by
flowchart 1000 of FIG. 10, the method illustrated by flow-
chart 1100 of FIG. 11, and/or the method illustrated by flow-
chart 1200 of FIG. 12 can be implemented in system 1300,
discussed above. Accordingly, such computer programs rep-
resent controllers of the computer system 1300. Where
embodiments of the present invention are implemented using
software, the software can be stored in a computer program
product and loaded into computer system 1300 using remov-
able storage drive 1314, interface 1320, hard drive 1312, or
communications interface 1324.

Embodiments of the present invention are also directed to
computer program products including software stored on any
computer-usable medium. Such software, when executed in
one or more data processing device, causes a data processing
device(s) to operate as described herein. Embodiments of the
present invention employ any computer-usable or -readable
medium, known now or in the future. Examples of computer-
usable mediums include, but are not limited to, primary stor-
age devices (e.g., any type of random access memory), sec-
ondary storage devices (e.g., hard drives, floppy disks, CD
ROMS, ZIP disks, tapes, magnetic storage devices, optical
storage devices, MEMS, nanotechnological storage devices,
etc.), and communication mediums (e.g., wired and wireless
communications networks, local area networks, wide area
networks, intranets, etc.).

8. CONCLUSION

It is to be appreciated that the Detailed Description section,
and not the Summary and Abstract sections, is intended to be
used to interpret the claims. The Summary and Abstract sec-
tions may set forth one or more but not all exemplary embodi-
ments of the present invention as contemplated by the inven-
tors, and thus, are not intended to limit the present invention
and the appended claims in any way.

Embodiments of the present invention have been described
above with the aid of functional building blocks illustrating
the implementation of specified functions and relationships
thereof. The boundaries of these functional building blocks
have been arbitrarily defined herein for the convenience of the
description. Alternate boundaries can be defined so long as
the specified functions and relationships thereof are appro-
priately performed.

The foregoing description of the specific embodiments will
so fully reveal the general nature of the invention that others
can, by applying knowledge within the skill of the relevant
art, readily modify and/or adapt for various applications such
specific embodiments, without undue experimentation, with-
out departing from the general concept of the present inven-
tion. Therefore, such adaptations and modifications are
intended to be within the meaning and range of equivalents of
the disclosed embodiments, based on the teaching and guid-
ance presented herein. It is to be understood that the phrase-
ology or terminology herein is for the purpose of description
and not of limitation, such that the terminology or phraseol-
ogy of the present specification is to be interpreted by the
skilled artisan in light of the teachings and guidance.

20

25

30

35

40

45

55

22

The breadth and scope of the present invention should not
be limited by any of the above-described exemplary embodi-
ments, but should be defined only in accordance with the
following claims and their equivalents.

What is claimed is:

1. A method for speech recognition, the method compris-
ing:

hashing, at an acoustic processor, a data to generate a table

index; and

reading, at the acoustic processor, a valid bit at the table

index of a first memory device, wherein the valid bit
indicates whether a table entry at a corresponding table
index of a second memory device is valid.

2. The method according to claim 1, further comprising:

storing the data at the corresponding table index of the

second memory device when the valid bit indicates that
the table entry is invalid; and

setting the valid bit at the table index of the first memory

device to indicate that the data stored in the second
memory device is valid.

3. The method according to claim 1, further comprising:

incrementing an iteration count associated with a hashing

function when the valid bit indicates that the table entry
is valid;

hashing the data with the hashing function to generate

another table index; and

storing the data at the another table index of the second

memory device.

4. The method according to claim 1, further comprising:

comparing the data to the table entry; and

setting a scored bit at the table index of the first memory

device to indicate that the table entry has been processed
when the data matches the table entry.

5. The method according to claim 1, further comprising:

indicating that the data is not associated with the current

frame of data when the valid bit indicates that the table
entry is invalid.

6. The method according to claim 4, further comprising:

comparing the data to the table entry;

incrementing an increment count associated with a hashing

function when the data does not match the table entry;
and

hashing the data with the hashing function to generate

another table index.

7. The method according to claim 1, further comprising:

initializing the table index;
reading the valid bit at the table index of the first memory
device, wherein the table index is incremented to create
a second table index for the first memory device when
the valid bit indicates that the table entry is invalid; and

reading a second valid bit at the incremented table index of
the first memory device when the incremented table
index is less than the size of a table associated with the
table index.

8. The method according to claim 7, further comprising:

reading a scored bit at the table index of the first memory

device when the valid bit indicates that the table entry is
valid, wherein the scored bit indicates whether the table
entry at the corresponding table index has been pro-
cessed; and

incrementing the table index to create a third table index

when the scored bit indicates that the table entry has
been processed, wherein the second memory device
comprises a corresponding third table index.

9. The method according to claim 7, further comprising:

reading a scored bit at the table index of the first memory

device when the valid bit indicates that the table entry is

US 9,230,548 B2

23

valid, wherein the scored bit indicates whether the table
entry at the corresponding table index has been pro-
cessed;

processing the table entry when the scored bit indicates that
the table entry has not been processed; and

incrementing the table index to create a third table index,
wherein the second memory device comprises a corre-
sponding third table index.

10. The method according to claim 1, wherein the hashing
comprises applying a first hashing algorithm and a second
hashing algorithm, wherein the first hashing algorithm is
applied to the data and the second hashing algorithm is
applied to the data and includes an iteration multiplication
factor.

11. An acoustic processing apparatus, the apparatus com-
prising:

a first memory device configured to store one or more data

elements;

a second memory device configured to store one or more
status bits at one or more respective table indices,
wherein each of the table indices is mapped to a corre-
sponding table index in the first memory device, one of
the one or more status bits is a valid bit, and the valid bit
indicates whether a table entry at a corresponding table
index of the first memory device contains valid data; and

an acoustic processing device configured to calculate one
or more hash values based on the one or more data
elements.

12. The apparatus of claim 11, wherein the first memory

device is slower, has a smaller footprint, or is cheaper to
manufacture than the second memory device.

20

24

13. The apparatus of claim 11, wherein the first memory
device comprises a Dynamic Random Access Memory
(DRAM) device and the second memory device comprises a
Static Random Access Memory (SRAM) device.

14. The apparatus of claim 11, wherein the hash value is
used as an index to a first table and a second table in the first
memory device and the second memory device, respectively.

15. The apparatus of claim 11, the one or more data ele-
ments comprise arc data, a score, an overflow pointer, an
overflow length, or a combination thereof.

16. The apparatus of claim 11, the first memory device
further comprises one or more table indices that do not have
a corresponding table index in the second memory device.

17. The apparatus of claim 11, wherein the one or more
status bits comprise a score bit, wherein the score bit indicates
that the one or more data elements at the one or more corre-
sponding table indices in the first memory device has been
processed.

18. The apparatus of claim 11, wherein the processing
device is configured to apply a first hashing algorithm and a
second hashing algorithm to calculate each ofthe one or more
hash values, wherein the first hashing algorithm is applied to
each of the one or more data elements and the second hashing
algorithm is applied to each of the one or more data elements
and includes an iteration multiplication factor.

19. The apparatus of claim 11, wherein the processing
device is configured to apply a first hashing algorithm that
determines a random sized step, based on the one or more data
elements.

